Robot cheetah runs free!

Science Daily blows the whistle on the MIT robotics engineers who let the robot cheetah off its tether to run and jump like a wild beast:

The team recently took the robot for a test run on MIT’s Killian Court, where it bounded across the grass at a steady clip.

In experiments on an indoor track, the robot sprinted up to 10 mph, even continuing to run after clearing a hurdle. The MIT researchers estimate that the current version of the robot may eventually reach speeds of up to 30 mph.

The key to the bounding algorithm is in programming each of the robot’s legs to exert a certain amount of force in the split second during which it hits the ground, in order to maintain a given speed: In general, the faster the desired speed, the more force must be applied to propel the robot forward. Sangbae Kim, an associate professor of mechanical engineering at MIT, hypothesizes that this force-control approach to robotic running is similar, in principle, to the way world-class sprinters race.

“Many sprinters, like Usain Bolt, don’t cycle their legs really fast,” Kim says. “They actually increase their stride length by pushing downward harder and increasing their ground force, so they can fly more while keeping the same frequency.”

“Bounding is like an entry-level high-speed gait, and galloping is the ultimate gait,” Kim says. “Once you get bounding, you can easily split the two legs and get galloping.”

As an animal bounds, its legs touch the ground for a fraction of a second before cycling through the air again. The percentage of time a leg spends on the ground rather than in the air is referred to in biomechanics as a “duty cycle”; the faster an animal runs, the shorter its duty cycle.

Kim and his colleagues developed an algorithm that determines the amount of force a leg should exert in the short period of each cycle that it spends on the ground. That force, they reasoned, should be enough for the robot to push up against the downward force of gravity, in order to maintain forward momentum.

“Once I know how long my leg is on the ground and how long my body is in the air, I know how much force I need to apply to compensate for the gravitational force,” Kim says. “Now we’re able to control bounding at many speeds. And to jump, we can, say, triple the force, and it jumps over obstacles.”

Be the first to comment

Leave a Reply