Emotions help you remember information

Science Daily processes a University of Haifa finding about why first impressions are so important – and how *feeling* a thing helps you *know* a thing:

Dr. Shlomo Wagner of the Sagol Department of Neurobiology at the University of Haifa, who undertook the study, explains: “It turns out that different emotions cause the brain to work differently and on distinct frequencies.”

The main goal of the new study, which was published this February in the science journal eLife, was to identify the electrical activity that takes place in the brain during the formation of social memory. During the course of their work, the researchers — Dr. Wagner and Ph.D. Alex Tendler — discovered the scientific explanation behind the saying “you never get a second chance to make a first impression.”

In the first part of the study the researchers examined the electrical activity in the brains of rats during social behavior. They discovered strong rhythmical activity reflecting a state of excitement in the animal. To their surprise, this activity was particularly strong and synchronous between areas of the brain associated with social memory during the first encounter between two previously unfamiliar rats. This rhythmical brain activity declined in strength and in the level of coordination between different brain areas as the encounter between the two rats was repeated.

The researchers compared the brain activity during this social behavior with the activity sparked by non-emotional stimuli, such as an encounter with an inanimate object. Although on the behavioral level the rats also showed a high level of interest in such stimuli, their brain patterns did not show the same exceptional level of coordinated rhythmical activity seen in the encounter with an unfamiliar rat.

The researchers duly exposed the rats to a different emotion — a negative one associated with exposure to a frightening stimulant. It emerged that the brain works differently in this instance. Once again, strong rhythmical activity and coordination between the different areas associated with social memory was seen. However, this took place on a different frequency and at a slower rhythmical pattern.

“It seems that when the emotion is social and positive, the brain tells the different areas to work according to one communication protocol. When a different emotion is involved, such a negative emotion of fear as in our experiment, the brain tells the same areas to use a different communication protocol[,” says Dr. Wagner.]