Stanford researchers have discovered something strange about microscopic worms, ScientificBlogging reports. These nematodes have specific genes that regulate the aging process:
The researchers examined the regulation of aging in C. elegans, a millimeter-long nematode worm whose simple body and small number of genes make it a useful tool for biologists. The worms age rapidly: their maximum life span is about two weeks.
Comparing young worms to old worms, Kim’s team discovered age-related shifts in levels of three transcription factors, the molecular switches that turn genes on and off. These shifts trigger genetic pathways that transform young worms into geezers. The findings will appear in the July 24 issue of the journal Cell.
…
“Everyone has assumed we age by rust,” Kim said. “But then how do you explain animals that don’t age?”
Some tortoises lay eggs at the age of 100, he points out. There are whales that live to be 200, and clams that make it past 400. Those species use the same building blocks for their DNA, proteins and fats as humans, mice and nematode worms. The chemistry of the wear-and-tear process, including damage from oxygen free-radicals, should be the same in all cells, which makes it hard to explain why species have dramatically different life spans.
“A free radical doesn’t care if it’s in a human cell or a worm cell,” Kim said.
And if aging is caused not by wear-and-tear but by genes, we can create a therapy that’ll turn them off.