NPR’s Skunk Bear turns us on (in general, but specifically with this) observing the outsized influence of unanticipated consequences – singling out for awards all the times researchers were trying to do one thing and wound up doing something else completely brilliant:
1. WHEN FROGS ATTACK
Carlos Jared was doing fieldwork in the jungles of southwest Brazil when he picked up a harmless-looking frog. The frog twisted and thrashed, butting Jared’s hand with his head. Excruciating pain spread up Jared’s arm, and for the next five hours he was in agony.
He had inadvertently discovered that frogs can be venomous.
Many amphibians secrete toxins through their skin, but the frog Jared picked up — Greening’s frog — was the first discovered to actually force those toxins into a predator’s bloodstream. When attacked, it retracts the skin around its upper lip, revealing bony spines. Jared and collaborator Edmund Brodie discovered that a gland at the base of each spine produces a toxic mucus that is twice as potent as the venom of a Brazilian pit viper.
…
8. WASPS, FACE TO FACE
As a young graduate student, Liz Tibbetts was studying social hierarchy in wasp colonies. She caught the wasps and painted dots on their backs, so she could tell them apart, and then videotaped their behavior.
Tibbetts failed to mark a few of the wasps and didn’t realize her mistake until she was reviewing the video. It was a problem. If she couldn’t follow individuals, she couldn’t get the data she needed. But, looking a bit closer, she realized she could tell the wasps apart without the paint. The face of each insect had distinct colors and shapes.
Tibbetts wondered if the wasps could also recognize each other. To an experienced researcher this might have seemed outlandish — prevailing wisdom held that social insects couldn’t distinguish between individuals. But Tibbetts was new to the field, and so she asked the question anyway.
Her research showed that not only can wasps tell each other apart, but their tiny brains have evolved in a way that allows them to particularly recognize faces. This ability allows for complex social interactions within colonies.
…
10. A LITERAL CASE OF ACCIDENTAL BRILLIANCE
Calden Carroll thought that his days as a chemistry graduate student at the University of Oregon were nearly done — his thesis was nearly complete. He believed he had created a molecule that would light up in the presence of chloride. Such a molecule would be useful to scientists studying cystic fibrosis, a disease that disrupts the movement of chloride across cell membranes.
But when he tested his magic molecule, it failed spectacularly. Instead of highlighting chloride, it lit up whenever nitrate was present.
A professor pointed out this failed marker could actually be really useful — not for medicine, perhaps, but for agriculture. Carroll patented his discovery and now has a company that builds nitrate sensors to help farmers fertilize their fields more efficiently.
I’m also a big fan of #12, but this is a family website.
OK, maybe it isn’t, but you’ll have to click the link to read it anyway.