Science Daily reports on “glassy carbon electrodes,” a breakthrough in the interfaces that connect computers to our brains:
The Center for Sensorimotor Neural Engineering (CSNE) — a collaboration of San Diego State University with the University of Washington and the Massachusetts Institute of Technology — is working on an implantable brain chip that can record neural electrical signals and transmit them to receivers in the limb, bypassing [spinal cord] damage and restoring movement.
…
The current state-of-the-art material for electrodes in these devices is thin-film platinum. The problem is that these electrodes can fracture and fall apart over time, said one of the study’s lead investigators, Sam Kassegne, deputy director for the CSNE at SDSU and a professor in the mechanical engineering department.
Kassegne and colleagues developed electrodes made out of glassy carbon, a form of carbon. This material is about 10 times smoother than granular thin-film platinum, meaning it corrodes less easily under electrical stimulation and lasts much longer than platinum or other metal electrodes.
“Glassy carbon is much more promising for reading signals directly from neurotransmitters,” Kassegne said. “You get about twice as much signal-to-noise. It’s a much clearer signal and easier to interpret.”
…
The process involves patterning a liquid polymer into the correct shape, then heating it to 1000 degrees Celsius, causing it become glassy and electrically conductive. Once the electrodes are cooked and cooled, they are incorporated into chips that read and transmit signals from the brain and to the nerves.
Researchers in Kassegne’s lab are using these new and improved brain-computer interfaces to record neural signals both along the brain’s cortical surface and from inside the brain at the same time. “If you record from deeper in the brain, you can record from single neurons,” explained Elisa Castagnola, one of the researchers. “On the surface, you can record from clusters. This combination gives you a better understanding of the complex nature of brain signaling.”