Science Daily passes the word from Wake Forest about medical engineers who’ve come up with a functional bioprinter that can replace real skin layer by layer by the patient’s bedside:
“The unique aspect of this technology is the mobility of the system and the ability to provide on-site management of extensive wounds by scanning and measuring them in order to deposit the cells directly where they are needed to create skin,” said Sean Murphy, Ph.D., a WFIRM assistant professor who was lead author of the paper published this month in Nature’s Scientific Reports journal.
…
The major skin cells — dermal fibroblasts and epidermal keratinocytes — are easily isolated from a small biopsy of uninjured tissue and expanded. Fibroblasts are cells that synthesize the extracellular matrix and collagen that play a critical role in wound healing while keratinocytes are the predominant cells found in the epidermis, the outermost layer of the skin.
The cells are mixed into a hydrogel and placed into the bioprinter. Integrated imaging technology involving a device that scans the wound, feeds the data into the software to tell the print heads which cells to deliver exactly where in the wound layer by layer. Doing so replicates and accelerates the formation of normal skin structure and function.
The researchers demonstrated proof-of-concept of the system by printing skin directly onto pre-clinical models.
The next step is to conduct a clinical trial in humans.
…
“If you deliver the patient’s own cells, they do actively contribute to wound healing by organizing up front to start the healing process much faster,” said James Yoo, M.D., Ph. D, who led the research team and co-authored the paper.