Science Daily reports on a deep space mystery that the International Centre for Radio Astronomy Research is trying to figure out – namely, what this thing is that, for one minute in every 20, is one of the brightest radio sources in the sky:
Astrophysicist Dr Natasha Hurley-Walker, from the Curtin University node of the International Centre for Radio Astronomy Research, led the team that made the discovery.
“This object was appearing and disappearing over a few hours during our observations,” she said.
“That was completely unexpected. It was kind of spooky for an astronomer because there’s nothing known in the sky that does that.
“And it’s really quite close to us — about 4000 lightyears away. It’s in our galactic backyard.”
The object was discovered by Curtin University Honours student Tyrone O’Doherty using the Murchison Widefield Array (MWA) telescope in outback Western Australia and a new technique he developed.
“It’s exciting that the source I identified last year has turned out to be such a peculiar object,” said Mr O’Doherty, who is now studying for a PhD at Curtin.
…
Objects that turn on and off in the Universe aren’t new to astronomers — they call them ‘transients’.
ICRAR-Curtin astrophysicist and co-author Dr Gemma Anderson said that “when studying transients, you’re watching the death of a massive star or the activity of the remnants it leaves behind.”
‘Slow transients’ — like supernovae — might appear over the course of a few days and disappear after a few months.
‘Fast transients’ — like a type of neutron star called a pulsar — flash on and off within milliseconds or seconds.
But Dr Anderson said finding something that turned on for a minute was really weird.
She said the mysterious object was incredibly bright and smaller than the Sun, emitting highly-polarised radio waves — suggesting the object had an extremely strong magnetic field.Dr Hurley-Walker said the observations match a predicted astrophysical object called an ‘ultra-long period magnetar’.
“It’s a type of slowly spinning neutron star that has been predicted to exist theoretically,” she said.
“But nobody expected to directly detect one like this because we didn’t expect them to be so bright….”
—
You can read more about the weird transient here, in Nature, and see images and multimedia here.