Science News has a report from space that’s not as cool as finding an oxygen-rich alien planet, but almost. It’s a planet that the James Webb Space Telescope discovered has an atmosphere rich in carbon dioxide:
The planet, dubbed WASP-39b, is huge and puffy. It’s a bit wider than Jupiter and about as massive as Saturn. And it orbits its star every four Earth days, making it scorching hot. Those features make it a terrible place to search for evidence of extraterrestrial life (SN: 4/19/16). But that combination of puffy atmosphere and frequent passes in front of its star makes it easy to observe, a perfect planet to put the new telescope through its paces.
…
For about eight hours in July, the telescope observed starlight that filtered through the planet’s thick atmosphere as the planet crossed between its star and JWST. As it did, molecules of carbon dioxide in the atmosphere absorbed specific wavelengths of that starlight.
…
The JWST data also showed an extra bit of absorption at wavelengths close to those absorbed by carbon dioxide. “It’s a mystery molecule,” says astronomer Natalie Batalha of the University of California, Santa Cruz, who led the team behind the observation. “We have several suspects that we are interrogating.”
The amount of carbon dioxide in an exoplanet’s atmosphere can reveal details about how the planet formed (SN: 5/11/18). If the planet was bombarded with asteroids, that could have brought in more carbon and enriched the atmosphere with carbon dioxide. If radiation from the star stripped away some of the planet atmosphere’s lighter elements, that could make it appear richer in carbon dioxide too.
Despite needing a telescope as powerful as JWST to detect it, carbon dioxide might be in atmospheres all over the galaxy, hiding in plain sight. “Carbon dioxide is one of the few molecules that is present in the atmospheres of all solar system planets that have atmospheres,” Batalha says. “It’s your front-line molecule.”
Eventually, astronomers hope to use JWST to find carbon dioxide and other molecules in the atmospheres of small rocky planets, like the ones orbiting the star TRAPPIST-1…. Some of those planets, at just the right distances from their star to sustain liquid water, might be good places to look for signs of life.
—
You can read more of Batalha’s team’s research here, in arXiv>astro-ph.