A magnetic galactic map in three dimensions.

The University of Tokyo might have solved some riddles about the formation of stars by creating the world’s first 3D map of the galaxy’s own magnetic field:

“Until now, all observations of magnetic fields within the Milky Way led to a very limited model that was uniform all over and largely matched the disc shape of the galaxy itself,” said Assistant Professor Yasuo Doi from the Department of Earth Science and Astronomy. “Thanks in part to telescope facilities at Hiroshima University capable of measuring polarized light to help us ascertain magnetic signatures, and the Gaia satellite launched by the European Space Agency in 2013, which specialized in measuring the distances to stars, we are able to build a better model with finer details in three dimensions. We focused on a specific area, the Sagittarius arm of our spiral galaxy (we are in the neighboring Orion arm) and found the dominant magnetic field there breaks away from the plane of the galaxy significantly.”

Previous models and observations could only imagine a smooth and largely homogeneous magnetic field in our galaxy; whereas the new data show that although magnetic field lines in the spiral arms do roughly align with the galaxy at large, at small scales the lines are actually spread out across a range of distances due to various astrophysical phenomena such as supernovae and stellar winds. The galactic magnetic fields are also incredibly weak, around 100,000 times weaker than Earth’s own magnetic field. Despite this, however, over long time spans, gas and dust in interstellar space are accelerated by these fields which explains the presence of some stellar nurseries — star-forming regions — that cannot be explained by gravity alone. This finding implies further mapping of the magnetic fields within our galaxy could help better explain the nature and evolution of the Milky Way and other galaxies too.